

The Run 2 Dzero Muon System at the Fermilab Tevatron

Sharon Hagopian Florida State University Tallahassee, Florida U.S.A.

for the DØ Collaboration

7th International Conference on Advanced Technology and Particle Physics Villa Olmo, Como, Italy, October 15-19, 2001

Outline

Upgrade Overview

Central Muon Detectors

Forward Muon Detectors

Readout and Triggering

Conclusions

Proton-antiproton collisions at the Tevataron

Ø Upgrades for Run 2

- 1. Increase Luminosity
 - Ø Run I operated at 2x10³¹ cm⁻² s⁻¹
 - Ø Run II designed to achieve 5x10³² cm⁻² s⁻¹
- 2. Bunch spacing
 - Ø Run I bunch spacing was 3.5 μs
 - Ø Run II will begin with 396 ns, and eventually reach 132 ns
- 3. Increase in CME from 1.8 TeV to 1.96 TeV
- Ø Detector challenges
 - Ø Large occupancies and event pile-up
 - Ø radiation damage
- Ø Start of Run II March, 2001

Central Fiber Tracker Features

Ø Two Main Functions

- 1. With Silicon System
 - **ØTrack reconstruction**
 - ØMomentum measurement for $|\eta| < 1.7$
- 2. Fast Level 1 Triggering
 - ØTrigger on any charged particle with $p_t > 2 \text{ GeV}$
 - ØCombining information from muon and preshower system: single μ , e triggers

Central Fiber Tracker

Run 2 DØ Muon System

Wide Angle Muon System

Proportional Drift Tubes (PDTs)

built for Run I $|\eta|$ < 1.0

A layer – 18 modules (4 decks, 3 bottom) toroid magnet – 2 T

B layer – 38 modules (each 3 decks)

C layer – 38 modules (each 3 decks)

typical module – 2.8 m x 5.6 m

cell size - 5 cm x 10 cm

rectangular aluminum tubes

drift distance resolution ~ 500 microns

Momentum Resolution

Ø WAMUS Momentum Resolution

- \emptyset inner tracker: ~ $\delta p_T = 0.0015 p_T^2$
- Ø WAMUS: $\sigma(1/p)=0.18(p-2)/p^2 + 0.005$ (p in GeV/c)

Wide Angle Muon System

Cosmic Cap Scintillators

C layer – 240 counters

B layer (gap) - 16 counters

Cosmic Bottom Scintillators

B layer – 90 counters

C layer - counters 240

used for triggering and to reject cosmic rays

A- Counters

A layer - 630 counters phi segmentation = 4.5 deg.

used for muon triggering, reject out-of-time scattered particles, identify low p_T muons

Scintillator Times

Red histogram – A layer times for all cen. muon trigger Green histogram – A layer times for single cen. muon

+ 5 GeV jet trigger

PDTs and Scintillators

Forward Angle Muon System

Mini-drift Tubes - MDTs

Built by Joint Institute for Nuclear Research, Dubna

Assembled into octants at Fermilab

Cover: region 1.0 < $|\eta|$ < 2.0

Tubes have 8 cells, 1cm x 1cm cross section, made of aluminum extruded combs on plastic sleeves

A layer, toroid, B layer, C layer 50,000 channels

Coordinate resolution ~ .7 mm/layer Momentum resolution ~20% for low p

MDT Module

MDT Octant

Forward Angle Muon System

Scintillator Pixels

Built by Institute for High Energy Physics, Protvino

Assembled into octants at Fermilab, 96 counters/octant

phi segmentation - 4.5 deg matches CFT eta segmentation - .12(.07)

Typical size - 20 cm x 30 cm

Radiation hard Bicron 404A scintillator Kumarin WLS bars for light collection into PMTs

Scintillator Pixel

Scintillator Octant

Forward Muon Scintillation Pixels

Pixels

Ø Selection of muon hits in A layer by cutting on timing in B layer (single muon trigger)

Digital Signal Processors

Purpose of the DSP

- Ø Make muon segments from nearby hits in a single layer
- **Ø Buffer the L1 accepted data from the Frontend, while a Level 2 decision is pending.**
- Re-format this data, if accepted by Level 2 and send it to the Level 3 trigger system.

Features of the DSP

- **∅** High input/output bandwidth.
- Ø Fast task switching.
- **Code** is Interrupt based, written in Assembly language and runs online.

PTDs - 94 DSPs

MDTs - 24 DSPs

Pixels - 18 DSPs

D0 Muon Buffering Scheme

Run 2a Trigger Systems

Ø Level 1: a pipelined hardware stage

- Ø muon, tracking and calorimetry information
- **∅** uses Field Programmable Gate Arrays (FPGAs)
- Ø decision time 4.2 μ sec trigger rate: 10KHz
 - Øcomplete for central calorimeter
 - **Ø** Complete for muon systems
 - Ø work has begun for tracking and preshower systems

Ø Level 2: a second hardware stage

- Ø uses Dec Alphas
- Ø combines and refines Level 1 information with preprocessors for each subdetector
- Ø combines information in a global processor
- Ø max. decision time ~100 μsec
- Ø trigger rate: 1KHz
 - Øin the commissioning phase

Run 2a Trigger Systems (cont.)

Level 3: two stages

- Ø custom-built data acquisition system
- Ø a Linux farm of processors which does partial online event reconstruction and uses filters to accept or reject events
- Ø decision time of 50 msec
- Ø sustained trigger rate: 20Hz
 - **Øcurrently running with some** filters and rejecting events
 - Ø half bandwidth is expect in a few months
 - Øfull bandwidth by spring
- **Output event size 250 Kbytes**

Muon Triggers

Level 1

Uses: timing, hits, segments in A,B,C layers, octants in Cen, North, South

Current Triggers: single muon, muon + jet,

dimuons

Future Triggers: muon +CFT, mixed leptons

Level 2

Muon Preprocessor: uses calibration, more precise timing information muon candidates have timing, p_T, η, φ, quality

Global processor: combines muon, calorimeter, and central tracks

Level 3

Uses: hits, segments, muon tracks
Matches: muons to central tracks,
calorimeter information

Accepts or rejects events for offline reconstruction

$Z{ ightarrow}\mu\mu$ Candidate

Physics with Muons

- \emptyset Electroweak W/Z $\rightarrow \mu$
- Search for New Physics SUSY particle searches including trileptons chargino/neutralinos sleptons

Leptoquarks

W', Z' - heavy vector bosons Massive stable particles

Ø Muon b-tagged jets
 B physics
 top – single top and pair prod.
 higgs →b b

Conclusions

Run 2 has started!!

- Ø We've been taking muon physics triggers for calibration and commissioning.
- **Ø** We should have a fully capable detector with stable running conditions by Winter.
- Ø Look for first results at Moriond 2002, physics results by summer 2002
- Ø A very exciting time ahead